

## LOCALLY GROWN HEALTHY SEAFOOD KEEPING WORKING WATERFRONTS WORKING!

# **MAINE AQUACULTURE**

- >17 DIFFERENT SPECIES
- FRESH AND SALTWATER
- 120-140 FARMS
- \$83-110 MILLION ANNUAL FARM GATE SALES
- \$164 220 MILLION TOTAL ECONOMIC ACTIVITY
- TOTAL LEASED AREA 1300 ACRES < < 0.03% ME WATERS (31 FINFISH 69 SHELLFISH)

5-8%

- LOBSTER GEAR 17-28,000 ACRES
- RECREATIONAL MARINAS 4800 ACRES
- 2 MOST VALUABLE "CROPS" IN THE STATE (\$/PER ACRE)
  - FINFISH \$85,906 / ACRE
  - SHELLFISH \$16,632 / ACRE

### IT'S A SMALL LIFEBOAT AND WE ARE ALL ON IT TOGEATHER

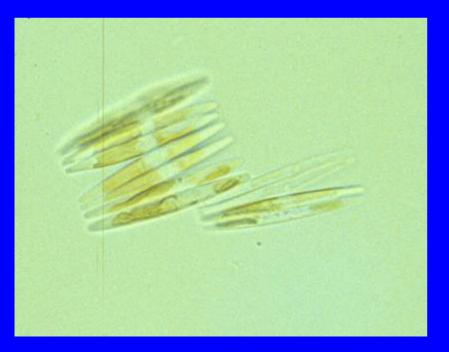


# PRINCIPLE CONCERNS REGARDING AQUACULTURE

- DISEASE
- NUTRIENTS
- ESCAPES AND INTERACTIONS
- FEED
- CHEMICALS
- SOCIAL CONFLICTS

NUTRIENT DISCHARGE CHARACTERISTICS IN AQUACULTURE

- ORGANIC DISCHARGE
- SOLUABLE (URINE N+)
- SOLID (FECES, FEED, BIOFOULING, N+P)


 POTENTIAL IMPACTS VARY WITH ECOSYSTEM AND LOCAL SITE CONDITIONS PRINCIPLE CONCERNS REGARDING NUTRIENTS

- TOO MUCH OF A GOOD THING
- IMPACTS WELL DOCUMENTED
- ACTUAL IMPACTS VARY WITH ECOSYSTEM TYPE
- FUNCTIONAL IMPACTS SAME

# SOLUABLES Dissolved nutrients and algae blooms

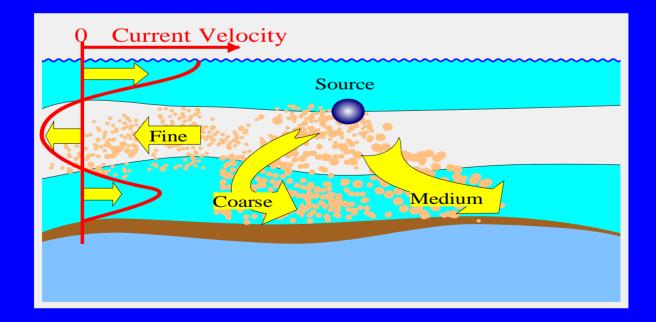
21 studies over 30 years

Japan, Scotland, Chile, Canada, Norway



Pseudonitzschia sp. diatom



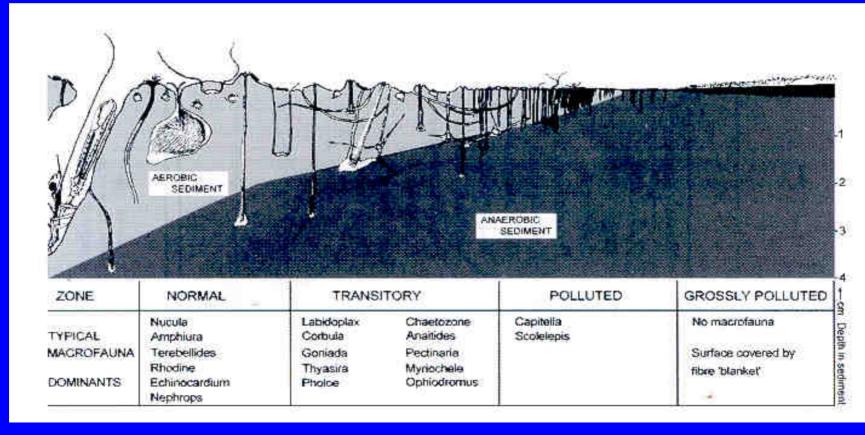

# **Dissolved Nutrients Conclusions**

18 studies found no effect

- 3 studies found low correlation between presence of farm and algae levels.
- In all 3 cases "loading" massive compared to receiving waters.
- No studies definitively attributed increased algae production to farm discharges
- Except perhaps in a few enclosed waters, enrichment by fish farm nutrients is too little, relative to natural levels, to have the alleged effects.
- Farm waste has a ratio of N to P close to natural ratios.
- Even in enclosed waters algal production from fish farm nutrients is small relative to that generated by marine and terrestrial inputs.
- Production is often limited by light not nutrients.

# SOLIDS Particulates - transport

- Distribution of settling velocities from waste feed and faecal particulates
- Advection by currents variable in time and depth (shear)
- Particles on the bed can be resuspended and redistributed




# **CLASSICAL PROGRESSION WITH INCREASED ORGANIC LOADING**

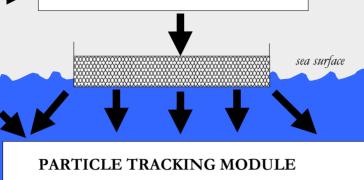
- ORGANIC LOADING
- SPECIES DIVERSITY
- BIOMASS † ↓
- MACROFAUNA 
   — MICROFAUNA
- AEROBIC → ANAEROBIC
- HYDROGEN SULPHIDE AND METHANE

Pearson and Rosenberg (1978)

## Seminal paper on macrofaunal response to organic pollution gradients






- CAGE POSITIONS
- STATION POSITIONS
- BATHYMETRY

#### IN-FEED TREATMENTS

• Conc.of compound on food; % excreted

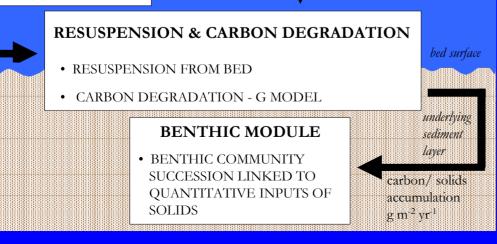
#### INPUT

- VARY FOOD INPUT via FISH GROWTH MODEL
- PARTICLE ATTRIBUTES
- VELOCITY DATA



**GRID GENERATION MODULE** 

• FOOD/FAECES WITH DIFFERENT SETTLING VEL.


water

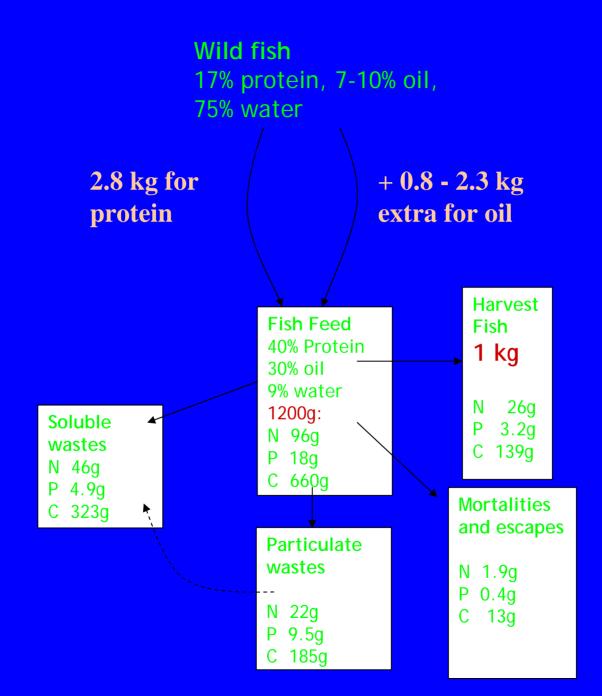
column

- ADVECTION OF PARTICLES BY CURRENTS
- REPRESENTATION OF CURRENT SHEAR
- TURBULENCE (RANDOM WALK)



• VALIDATED RESUSPENSION MODEL PARAMETERS (e.g. critical resuspension, deposition shear stress; erodibility constant)




 This process is amenable to modelling and several such models exist

#### DEPOMOD is used operationally by SEPA

Cromey, C. J., Black, K. D., Edwards, A. & Jack, I. A. (1998). Modelling the deposition and biological effects of organic carbon from marine sewage discharges. *Estuarine Coastal and Shelf Science* **47**, 295-308.

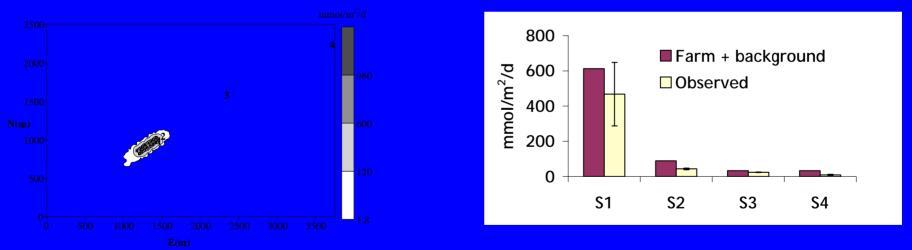
Cromey, C. J., Nickell, T. D. & Black, K. D. (2002a). DEPOMOD - modelling the deposition and biological effects of waste solids from marine cage farms. *Aquaculture* **214**, 211-239.

Cromey, C. J., Nickell, T. D., Black, K. D., Provost, P. G. & Griffiths, C. R. (2002b). Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. *Estuaries* **25**, 916-929.



**Budget for the** flow of nutrients from oceanic wild caught fish to the coastal environment for a harvest of 1 kg of farmed salmon assuming no substitution with vegetable protein or oil and a ratio of fish feed to product of 1.2:1

#### **DEPOMOD** - Site L


#### Model predictions of solids deposition from a cage group



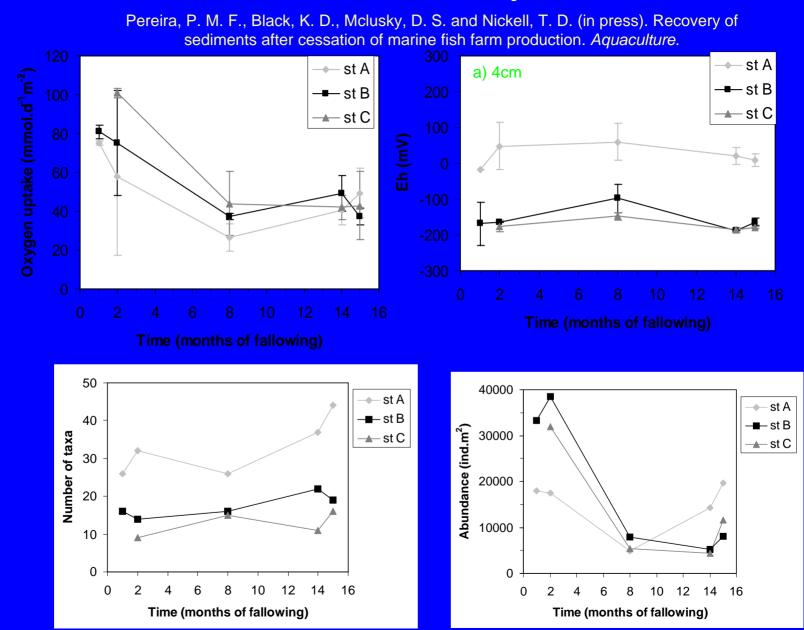
A2 is positioned between A1 and A3

### **INDIRECT IMPACTS ON OXYGEN BUDGETS**

Theoretical negative oxygen impacts (benthic and water column) due to BOD
18 studies over 28 years
Japan, Scotland, Ireland, Canada, US, Norway



Oxygen flux in loch Creran


Summing flux rates for L Creran indicates that sediment oxygen demand is only about 3% of tidal supply

Fish farm contributes <10% of that demand

# **CLASSICAL PROGRESSION WITH INCREASED ORGANIC LOADING**

- ORGANIC LOADING
- SPECIES DIVERSITY
- BIOMASS † ↓
- MACROFAUNA 
   — MICROFAUNA
- AEROBIC → ANAEROBIC
- HYDROGEN SULPHIDE AND METHANE

#### **Benthic Recovery**



# PRINCIPLE FACTORS INFLUENCING POTENTIAL ENVIROMENTAL IMPACTS OF NUTRIENTS DISCHARGED FROM A NET PEN

- DEPTH
- AVERAGE CURRENT SPEED
- SITE ENERGY CLASSIFICATION
- FEED FORMULATION
- FEEDING LEVELS AND METHODS
- FISH BIOMASS AND CONDITION
- LOCAL ECOSYSTEM
- BACKGROUND NUTRIENT LEVELS

# **NUTRIENT MANAGEMENT**

- LOADING LEVELS AND ASSIMILATIVE CAPACITY
- SITE SPECIFIC CARRYING CAPACITY
- FARM MANAGEMENT MUST BE
   IN TUNE WITH SITE
   CHARACTERISTICS

### Diver-deployed stirred flux chamber



# KEY NUTRIENT MANAGEMENT METHODS

- SITE SELECTION
- FEED MANAGEMENT
- PRODUCTION PLANNING
- WASTE MANAGEMENT
- SITE ROTATION AND FALLOWING
- ANIMAL HEALTH MANAGEMENT
- SPECIES ROTATIONS AND INTERCROPPING
- SITE MONITORING PROGRAM

## CORE MARINE FARM BMP CHARACTERISTICS

- DRIVEN BY ENVIRONMENTAL LINKAGE AND
   INABILITY TO CONTROL ENVIRONMENT
- RISK ANALYSIS BASED
- MUST ALLOW FOR ADAPTIVE MANAGEMENT
- SHOULD INCLUDE VERIFICATION

### Annual aquaculture input of nitrogen and phosphorus in the coastal waters off North East North American Coast

| Year                                    | 1994                | 2001                |
|-----------------------------------------|---------------------|---------------------|
| Salmon production                       | 11,836 <sup>1</sup> | 35,000 <sup>2</sup> |
| (tons)                                  |                     |                     |
| Nitrogen release rate<br>(kg/ton/year)  | 78.0 <sup>3</sup>   | 35.04               |
| Phosphorus release rate (kg/ton/year)   | 9.5 <sup>3</sup>    | 7.04                |
| Nitrogen input in the Bay (tons/year)   | 923                 | 1,225               |
| Phosphorus input in the Bay (tons/year) | 112                 | 245                 |

<sup>1</sup>DFO: <u>http://www.dfo-mpo.gc.ca/communic/statistics/stat\_e.htm</u> <sup>2</sup>Canadian Aquaculture Industry Alliance, pers. comm. <sup>3</sup>Ackefors and Enell (1994)

<sup>4</sup>ICES (1996) DFO (1997) Chopin *et al.* (2001)

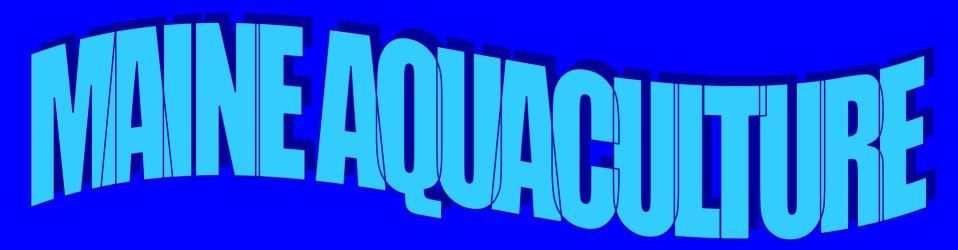
## **MULTITROPHIC AQUACULTURE**



### YOU CAN'T BEAT MOTHER NATURE



### MAINE AQUACULTURE KEEPING WORKING WATERFRONTS WORKING FEEDING AMERICA SUSTAINABLY














### **GROWING MAINES FUTURE**

**GOOD JOBS - RESPONSIBLE STEWARDSHIP - HEALTHY FOOD** 



Contact Me Sebastian Belle P.O. Box 148 Hallowell, ME 04347 207 622 0136

**MALNUTRITION** is still the number one killer and cause of suffering on earth; causing more deaths than HIV/AIDS, warfare, genocide, terrorism, or any other ailment.



| Date        | Treatment | Organism  | Therapeutants |     |     |     |      |            |     |     |
|-------------|-----------|-----------|---------------|-----|-----|-----|------|------------|-----|-----|
|             |           | U         | EMA           | СҮР | IVR | OTC | TC   | CHL        | ROM | TRI |
| 08-05-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 06-06-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 21-06-01    |           | Laminaria | ND            |     | ND  | ND  | ND   | ND         | ND  | ND  |
| 22/28-06-01 | EMA       |           |               |     |     |     |      |            |     |     |
| 11-07-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 27-07-01    |           | Laminaria | ND            |     | ND  | ND  | ND   | ND         | ND  | ND  |
| 11/17-08-01 | EMA       |           |               |     |     |     |      |            |     |     |
| 15-08-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 05-09-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 07-09-01    |           | Laminaria | ND            |     | ND  | ND  | ND   | ND         | ND  | ND  |
| 20/30-09-01 | OTC       |           |               |     |     |     |      |            |     |     |
| 10-10-01    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 15/23-10-01 | EMA       |           | •             |     |     |     |      |            |     |     |
| 19-10-01    |           | Laminaria | ND            |     | ND  | ND  | J.D. | ND         | ND  | ND  |
| 07/16-11-01 | OTC       |           |               |     |     |     |      |            |     |     |
| 4-12-01     |           | Mytilus   | ND            | ND  | L.D | ND  | NI   | <b>I</b> R | ND  | ND  |
| 12-12-01    |           | Laminaria | ND            |     | ND  | ND  | ND   | NΓ         | ND  | ND  |
| 09-01-02    |           | Mytilus   | ND            | ND  | ND  | 1 D | ND   | ND         | ND  | ND  |
| 02-02-02    |           | Laminaria | ND            | ND  | ND  | ND  | N L  | ND         | ND  | ND  |
| 04-04-02    |           | Laminaria | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 06-05-02    |           | Mytilus   | ND            | ND  | ND  | ND  | N    | ND         | ND  | ND  |
| 05-06-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | D          | ND  | ND  |
| 27-06-02    |           | Laminaria | ND            | ND  | ND  | ND  | ND   | NJ         | ND  | ND  |
| 03-07-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 19/25-07-02 | EMA       |           |               |     |     |     |      |            |     |     |
| 22-07-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 30-07-02    |           | Laminaria | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 31-07-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 07-08-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 13-08-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 26-08-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 27-08-02    |           | Laminaria | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 15-10-02    |           | Laminaria | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |
| 28-10-02    |           | Mytilus   | ND            | ND  | ND  | ND  | ND   | ND         | ND  | ND  |

**ENVIRONMENTAL POLICY** 

### **GUIDING PRINCIPLES**

### CODE OF PRACTICE

#### ENVIRONMENTAL MANAGEMENT SYSTEM

COMPREHENSIVE MANAGEMENT SYSTEM INVOLVING PLANNING, IMPLEMENTATION AND ONGOING REVIEW AND CORRECTIVE ACTIONS

### BEST MANAGEMENT PRACTICES

SPECIFIC SET OF OPERATIONAL STANDARDS

## **MAA COOPERATIVE MANAGEMENT PROGRAMS**

- PATHOGEN SPECIFIC ACTION PLANS
- INTERGRATED PEST MANAGEMENT PLAN
- CONTIANMENT MANAGEMENT SYSTEM
- FINFISH BAY MANAGEMENT AGREEMENT
- COMPREHENSIVE CODE OF PRACTICE
- SHELLFISH HEALTH AND BIOSECURITY MANAGEMENT PLAN
- BIOSECURITY AUDITS

### **MAA COOPERATIVE MANAGEMENT PROGRAMS**

## **MAA CODE OF PRACTICE**

MAA SHELLFISH HEALTH AND BIOSECURITY AGREEMENT MAA FINFISH BAY MANANGEMENT AGREEMENT

MAA FINFISH CONTIANMENT MANAGEMENT SYSTEM

## **MAA COOPERATIVE MANAGEMENT PROGRAMS**

- PATHOGEN SPECIFIC ACTION PLANS
- INTERGRATED PEST MANAGEMENT PLAN
- CONTIANMENT MANAGEMENT SYSTEM
- FINFISH BAY MANAGEMENT AGREEMENT
- COMPREHENSIVE CODE OF PRACTICE
- SHELLFISH HEALTH AND BIOSECURITY MANAGEMENT PLAN
- BIOSECURITY AUDITS

## **Use of Plant Proteins – Major constraints**

- Protein content <u>lower</u> than animal proteins
- Imbalanced amino acids in plant protein
- High amount of carbohydrates
  - Indigestible polysaccharides and sugars
- Inherent antinutritional factors, e.g.
  - Protease inhibitors
  - Goitrous glucosinolates
  - Agglutinating lectins
  - Antigenic proteins
  - Toxic gossypols
  - Phytic acid

### MAINE AQUACULTURE GROWING MAINES FUTURE THROUGH THE RESPONSIBLE STEWARDSHIP OF AQUATIC RESOURCES

#### MAINE FISH FARMERS ARE ENVIRONMENTALISTS

- FISHFARMERS ARE ON AND IN THE ENVIRONMENT EVERYDAY
  - MANY ARE TRAINED BIOLOGISTS
  - DAILY OBSERVERS OF ENVIROMENTAL CONDITIONS
- FISHFARMERS KNOWLEDGE AND FAMILARITY WITH STOCK IS POWERFULL ENVIRONMENTAL INDICATOR
  - CANARY IN THE MINE SHAFT
  - STUDENTS OF ANIMAL BEHAVIOR AND PHYSIOLOGICAL PERFORMANCE
- LINKAGES BETWEEN ENVIRONMENT AND ECONOMIC PERFOMANCE ARE MANY AND STRONG
  - SUBLEATHAL IMPACTS ON ANIMAL PERFORMANCE DIRECTLY REFLECTED IN ECONOMIC
     PERFORMANCE OF FARM
    - CONVERSION RATIO
    - GROWTH RATES

 EXTERNALITIES ARE FEW AND EMPIRICAL DATA TO SUPPORT LINKAGES ARE WEAK

### CURRENT REGULATORY AUTHORITIES FOR MAINE AQUACULTURE INDUSTRY

#### NATIONAL AUTHORITIES

- National Marine Fisheries Service
- U.S. Fish and Wildlife Service
- Army Corps of Engineers
- Environmental Protection Agency
- Department of Agriculture
- U.S. Department of Commerce
- U.S. Coast Guard
- U.S Department of Labor
- FDA
- ISSC

#### **REGIONAL AUTHORITIES**

- New England Fisheries Management Council
- Atlantic States Marine Fisheries Commission

#### STATE AUTHORITIES

- Department of Environmental Protection
- Department of Marine Resources
- Inland Fish and Wildlife
- Department of Agriculture
- Department of Health and Human Services

- FEDERAL REGULATORY
   OVERSIGHT
- Clean Water Act
- National Environmental Policy Act
- Coastal Zone Management Act
- Rivers and Harbors Act
- Endangered Species Act
- Lacey Act
- Migratory Bird Treaty Act
- Marine Mammal Protection Act
- Magnuson-Stevens Fisheries & Conservation Act
- Sustainable Fisheries Act
- Food Drug & Cosmetic Act
- Nonindigenous Aquatic Nuisance
   Prevention & Control Act
- Federal Insecticide, Fungicide and Rodenticide Act
- Virus-Serum-Toxin Act
- Federal Sanitation Standards (HACCP) Regulations
- National Marine Sanctuary Act.

## MAINE STATE AQUACULTURE MANAGEMENT PROGRAM

- AQUACULTURE LEASING PROGRAM
- DEP/DMR ENVIRONMENTAL MONITORING PROGRAM
- AQUACULTURE PRODUCTION MONITORING (FAMP)
- FISH HEALTH SURVELLIANCE AND CERTIFICATION PROGRAM (USDA, IFW,DMR)
- BIOSECURITY AUDITING PROGRAM
- CONTIANMENT MANAGEMENT SYSTEM AUDITING PROGRAM
- WATER CERTIFICATION PROGRAM
- MARINE BIOTOXINS MONITORING PROGRAM
- PUBLIC HEALTH / SEAFOOD SAFETY INSPECTION PROGRAM

# **COASTAL COMMUNITY TRENDS**

- TRADITIONAL RESOURCE BASES SIGNIFICANTLY DEPLETED
- DRAMATIC INCREASES IN PROPERTY VALUES AND TAXES
- SIGNIFICANT POPULATION GROWTH WITH INCREASING % SENIORS
- COMMUNITIES INCREASINGLY BASED ON NON EXTRACTION RESOURCE USE (LIFESTYLE/TOURISM)
- NON-EXTRACTIVE RESOURCE USE SHIFTING FROM SUMMER ACTIVITY TO YEAR ROUND
- REDUCTION AND DISPLACEMENT OF TRADITIONAL SOCIO-ECONOMIC GROUPS BASED ON NATURAL RESOURCE EXPLOITATION





# SUSTAINABLE SOLUTIONS FOR MAINE'S <u>GROWING</u> FUTURE